Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(7): e29088, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38617947

ABSTRACT

Road dust is a major source of pollution in the environment, carrying different pollutants, including heavy metals and metalloids, from one location to another. This study assesses the concentrations of eight heavy metals and one metalloid (Zn, Pb, Mn, Fe, Cr, Cu, Cd, Ni, and As) in dust samples collected from sixty-eight streets of Sharjah, United Arab Emirates using ICP-OES, as well as investigates their effects on both the environment and humans. Mean concentrations of the elements in µg/g across the sites were 392 ± 46 (Zn), 68.28 ± 11.3 (Pb), 1437 ± 67 (Mn), 39,481 ± 4611 (Fe), 460 ± 31 (Cr), 150 ± 44 (Cu), 1.25 ± 0.65 (Cd), 856 ± 72 (Ni), and 0.97 ± 0.28 (As). The Cdeg and ERI calculated from the study were 54.79 and 573, respectively, suggesting varying pollution levels. The highest contributions were from Ni, Cd, Zn, Cu, Cr, and Pb, especially in areas with heavy traffic. The non-carcinogenic risk assessments were generally low for the three routes of exposure, except HQoral that was slightly higher for children. Similarly, none of the elements exhibited any carcinogenic risk except chromium. Overall, the cancer risk is considered low. In view of the limited studies from UAE in relation to the metal content of road-deposited dusts, the current study serves as novel knowledge, especially in the context of geographical areas with a higher occurrence of sandstorms and the presence of particulate matter. The study also adds to the global understanding of the contribution of street dust to environmental pollution and its implications for human health.

2.
J Hazard Mater ; 466: 133543, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38262318

ABSTRACT

The prevalence of organophosphate esters (OPEs) in the global environment is increasing, which aligns with the decline in the usage of polybrominated diphenyl ethers (PBDEs). PBDEs, a category of flame retardants, were banned and classified as persistent organic pollutants (POPs) through the Stockholm Convention due to their toxic and persistent properties. Despite a lack of comprehensive understanding of their ecological and health consequences, OPEs were adopted as replacements for PBDEs. This research aims to offer a comparative assessment of PBDEs and OPEs in various domains, specifically focusing on their persistence, bioaccumulation, and toxicity (PBT) properties. This study explored physicochemical properties (such as molecular weight, octanol-water partition coefficient, octanol-air partition coefficient, Henry's law constant, and vapor pressures), environmental behaviors, global concentrations in environmental matrices (air, water, and soil), toxicities, bioaccumulation, and trophic transfer mechanisms of both groups of compounds. Based on the comparison and analysis of environmental and toxicological data, we evaluate whether OPEs represent another instance of regrettable substitution and global contamination as much as PBDEs. Our findings indicate that the physical and chemical characteristics, environmental behaviors, and global concentrations of PBDEs and OPEs, are similar and overlap in many instances. Notably, OPE concentrations have even surged by orders of several magnitude compared to PBDEs in certain pristine regions like the Arctic and Antarctic, implying long-range transport. In many instances, air and water concentrations of OPEs have been increased than PBDEs. While the bioaccumulation factors (BAFs) of PBDEs (ranging from 4.8 to 7.5) are slightly elevated compared to OPEs (-0.5 to 5.36) in aquatic environments, both groups of compounds exhibit BAF values beyond the threshold of 5000 L/kg (log10 BAF > 3.7). Similarly, the trophic magnification factors (TMFs) for PBDEs (ranging from 0.39 to 4.44) slightly surpass those for OPEs (ranging from 1.06 to 3.5) in all cases. Metabolic biotransformation rates (LogKM) and hydrophobicity are potentially major factors deciding their trophic magnification potential. However, many compounds of PBDEs and OPEs show TMF values higher than 1, indicating biomagnification potential. Collectively, all data suggest that PBDEs and OPEs have the potential to bioaccumulate and transfer through the food chain. OPEs and PBDEs present a myriad of toxicity endpoints, with notable overlaps encompassing reproductive issues, oxidative stress, developmental defects, liver dysfunction, DNA damage, neurological toxicity, reproductive anomalies, carcinogenic effects, and behavior changes. Based on our investigation and comparative analysis, we conclude that substituting PBDEs with OPEs is regrettable based on PBT properties, underscoring the urgency for policy reforms and effective management strategies. Addressing this predicament before an exacerbation of global contamination is imperative.


Subject(s)
Flame Retardants , Halogenated Diphenyl Ethers , Halogenated Diphenyl Ethers/toxicity , Halogenated Diphenyl Ethers/analysis , Environmental Monitoring , Organophosphates/analysis , Water/analysis , Flame Retardants/toxicity , Flame Retardants/analysis , Octanols , Esters/toxicity
3.
Environ Geochem Health ; 45(5): 1289-1309, 2023 May.
Article in English | MEDLINE | ID: mdl-35933629

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are a large group of diverse hazardous organic compounds that are relatively stable and widely distributed throughout the world's ecosystems due to various anthropogenic activities. They are generally less soluble in water and have a low vapour pressure, but dissolve easily in adipose tissues; and they bioaccumulate into high concentrations in aquatic animals, thereby exerting a variety of hazardous and lethal effects. Despite the plethora of research studies on these pollutants, only few bibliometric reviews on the subject have been documented in the literature. As a result, the present study aimed to assess the research growth on PAHs-related studies across different ecosystems. Science Citation Index-Expanded of Web of Science was explored to obtain the research studies that were conducted between 1991 and 2020, and RStudio was utilized for the data analysis. Annual productivity increased arithmetically over the years, with a 9.2% annual growth rate and a collaboration index of 2.52. Foremost among the trend topics in this field of study include soil, sediments, biodegradation, bioremediation, bioavailability, and source apportionment. China, USA, Spain, France and Germany were the five top-ranked countries in terms of publications and citations over the three decades investigated; however, Korea, Japan, United Kingdom, Germany, and Canada were ranked as the five leading countries in terms of collaboration per published article (MCP ratio). Therefore, efforts to strengthen international collaboration in this field of study especially among the less participating countries and continents are thus encouraged. The findings of this study are expected to provide future direction for the upcoming researchers in identifying the hot spots in this field of study as well as research leaders whom to seek collaboration in their future research plan.


Subject(s)
Environmental Pollutants , Polycyclic Aromatic Hydrocarbons , Animals , Polycyclic Aromatic Hydrocarbons/analysis , Ecosystem , Environmental Pollutants/analysis , Biodegradation, Environmental , Bibliometrics , Environmental Monitoring
4.
Environ Geochem Health ; 41(6): 2777-2801, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31177475

ABSTRACT

Organochlorine contaminants were analysed in surface water from Sundays (SDE) and Swartkops Estuaries (SWE), Eastern Cape Province, which is among the largest estuaries in South Africa. The concentration of Σ18OCPs ranged from 16.7 to 249.2 ng/L in autumn, 19.9-81.4 ng/L in winter, 43.6-126.8 ng/L in spring and 68.3-199.9 ng/L in summer for SDE, whereas in SWE, the values varied from 20.9 to 259.7 ng/L in autumn, 58.9-263.9 ng/L in winter, 3.2-183.6 ng/L in spring and 118.0-188.9 ng/L in summer. Among all OCPs, α-HCH, ß-HCH, p,p'-DDE, p,p'-DDT, endrin, dieldrin and endrin aldehyde were predominant in surface water samples from SDE and SWE. Furthermore, the mean concentration of polychlorinated biphenyls (PCBs) ranged from 126.7 ng/L in winter to 151.0 ng/L in spring for SDE and 249.0 ng/L in spring to 727.6 ng/L in winter for SWE. Tri- and tetra-PCBs dominated the PCB homologue profile. Hierarchical cluster analysis grouped the study sites into three regions from least polluted to most polluted, indicated that SWE is more polluted compared to SDE, probably due to the influx of agricultural and industrial effluents. Carcinogenic and non-carcinogenic risk assessment revealed that the water from both estuaries is not safe for drinking, although suitable for bathing.


Subject(s)
Hydrocarbons, Chlorinated/analysis , Water Pollutants, Chemical/analysis , Carcinogens, Environmental/analysis , Cluster Analysis , Environmental Monitoring/methods , Estuaries , Humans , Hydrocarbons, Chlorinated/toxicity , Pesticides/analysis , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/toxicity , Risk Assessment , Rivers , Seasons , South Africa , Water Pollutants, Chemical/toxicity
5.
Article in English | MEDLINE | ID: mdl-29125583

ABSTRACT

Most organochlorine pesticides (OCPs) which are increasingly used in agriculture and industry are not biodegradable and thereby persist in the environment for a very long period of time. They are capable of negatively impacting the health of humans and biota when present in a higher concentration than recommended. This study evaluated the concentrations of 17 OCPs in surface water samples collected from six sampling sites along the course of the Buffalo River in Eastern Cape, South Africa, between December 2015 and May 2016. The samples were subjected to solvent extraction, followed by florisil clean up, and analyzed using gas chromatography coupled with an electron capture detector. The individual concentrations of OCPs detected ranged from

Subject(s)
Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Adolescent , Adult , Agriculture , Child , Child, Preschool , Chromatography, Gas , Environmental Monitoring/methods , Humans , Infant , Infant, Newborn , Neoplasms , Risk Assessment , South Africa
6.
Article in English | MEDLINE | ID: mdl-29053634

ABSTRACT

Petroleum hydrocarbon profiles of water and sediment samples of Algoa Bay in the Eastern Cape Province of South Africa were assessed using standard analytical procedures. Water (from surface and bottom levels) and sediment samples were collected from five locations in the bay from February to June 2016. Extraction of the petroleum hydrocarbons from the water and sediment samples collected was achieved using liquid-liquid and Soxhlet extraction techniques, respectively, followed by column clean up. Target compounds were analytically determined with gas chromatography-flame ionization detector (GC-FID) and quantified by integrating the areas of both the resolved and unresolved components. Physicochemical properties of the water samples were also determined on site using a SeaBird 19plusV2 CTD SBE 55 device. Estimated limit of detection, limit of quantitation and relative standard deviation for the 35 n-alkane standards ranged from 0.06 to 0.13 µg/L, 0.30 to 0.69 µg/L and 3.61 to 8.32%, respectively. Results showed that total petroleum hydrocarbon (TPH) varied from 45.07 to 307 µg/L in the water and 0.72 to 27.03 mg/kg in the sediments. The mean concentrations of TPH in both the water and sediment samples from Algoa Bay revealed a slight level of pollution. The diagnostic indices used showed that the hydrocarbons in the area were from both biogenic and anthropogenic sources. Hence, there is need for adequate regulation and control of all activities contributing to the levels of petroleum hydrocarbon in the marine environment for the safety of human, aquatic and wild lives in the area.


Subject(s)
Bays/chemistry , Environmental Pollution/analysis , Geologic Sediments/chemistry , Hydrocarbons/analysis , Petroleum/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...